

Chemistry Higher level Paper 1

Wednesday 7 November 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

	8	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.90	54 Xe 131.29	86 Rn (222)	118 Uuo (294)		
	17		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	117 Uus (294) (71 Lu 174.97	103 Lr (262)
	16		8 O 16.00 1	16 S 32.07	34 Se 78.96 7	52 Te 127.60	84 Po (209)	116 Uuh (293) (70 Yb 173.05	102 No (259)
	5		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.76	83 Bi 208.98	115 Uup (288)	69 Tm 168.93	101 Md (258)
	4		6 C 12.01	14 Si 28.09	32 Ge 72.63	50 Sn 118.71	82 Pb 207.2	114 Uug (289)	68 Er 167.26	100 Fm (257)
	5		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 Tl 204.38	113 Unt (286)	67 Ho 164.93	99 Es (252)
	12				30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)	66 Dy 162.50	98 Cf (251)
ple	7				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (281)	65 Tb 158.93	97 Bk (247)
dic Ta	10				28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	110 Ds (281)	64 Gd 157.25	96 Cm (247)
The Periodic Table	6				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt (278)	63 Eu 151.96	95 Am (243)
The	œ	_			26 Fe 55.85	44 Ru 101.07	76 0s 190.23	108 Hs (269)	62 Sm 150.36	94 Pu (244)
	7				25 Mn 54.94	43 Tc (98)	75 Re 186.21	107 Bh (270)	61 Pm (145)	93 Np (237)
	ဖ	er	mass		24 Cr 52.00	42 Mo 95.96	74 W 183.84	106 Sg (269)	60 Nd 144.24	92 U 238.03
	ις	Atomic number Element Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (268)	59 Pr 140.91	91 Pa 231.04	
	4	Atòr	Relativ		22 Ti 47.87	40 Zr 91.22	72 Hf 178.49	104 Rf (267)	58 Ce 140.12	90 Th 232.04
	ო				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89‡ Ac (227)	+	#
	7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.33	88 Ra (226)		
	-	− ≖ 1.0.1	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		
		_	7	က	4	5	9	_		

1. How many moles of FeS₂ are required to produce 32 g of SO₂? (A_r : S = 32, O = 16)

$$4FeS_2(s) + 11O_2(g) \rightarrow 2Fe_2O_3(s) + 8SO_2(g)$$

-3-

- A. 0.25
- B. 0.50
- C. 1.0
- D. 2.0
- 2. The volume of a sample of gas measured at 27 °C is 10.0 dm³. What is the temperature when the volume is reduced to 9.0 dm³ at the same pressure?
 - A. −3.0 °C
 - B. 24.3°C
 - C. 29.7°C
 - D. 57.0°C
- 3. An antacid tablet containing $0.50\,\mathrm{g}$ of NaHCO₃ ($M_\mathrm{r}=84$) is dissolved in water to give a volume of $250\,\mathrm{cm}^3$. What is the concentration, in mol dm⁻³, of HCO₃⁻ in this solution?
 - A. $\frac{0.250 \times 84}{0.50}$
 - B. $\frac{0.50}{84 \times 0.250}$
 - C. $\frac{250 \times 84}{0.50}$
 - D. $\frac{0.50}{84 \times 250}$
- 4. Which statements are correct for the emission spectrum of hydrogen?
 - I. The lines converge at higher frequencies.
 - II. Electron transitions to n = 2 are responsible for lines in the visible region.
 - III. Lines are produced when electrons move from lower to higher energy levels.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

5. The values for the first three successive ionization energies for two elements **X** and **Z** are given.

Element	First ionization energy / kJ mol ⁻¹	Second ionization energy / kJ mol ⁻¹	Third ionization energy / kJ mol ⁻¹
X	520	7300	11 800
Z	1090	2350	4610

Which pair of elements represents **X** and **Z**?

	X	Z
A.	ij	Be
B.	Li	С
C.	Be	Li
D.	Ве	С

- **6.** Which oxides produce an acidic solution when added to water?
 - I. Al_2O_3 and SiO_2
 - II. P_4O_6 and P_4O_{10}
 - III. NO₂ and SO₂
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 7. Which species will require the least energy for the removal of one electron?
 - A. Na⁺
 - B. Mg⁺
 - C. Al^{2+}
 - D. C³⁺

8. Which is correct for the complex ion in [Fe(H₂O)₅Cl]SO₄?

	Oxidation state of iron	Overall charge of the complex ion
A.	+2	2+
B.	+2	0
C.	+3	1+
D.	+3	2+

- **9.** Which species has the same molecular geometry as SO_3^{2-} ?
 - A. BF₃
 - B. SO₃
 - C. PF₃
 - D. CO₃²⁻

10. How many lone pairs and bonding pairs of electrons surround the central chlorine atom in ClF_2^+ ?

	Lone pairs	Bonding pairs
A.	0	2
B.	0	4
C.	2	4
D.	2	2

- 11. Which compound has the highest boiling point?
 - A. CH₃CHO
 - $\mathsf{B.} \quad \mathsf{CH_3CH_2F}$
 - C. CH₃OCH₃
 - $\mathsf{D.} \quad \mathsf{CH_3CH_2NH_2}$

12. What is the number of sigma (σ) and pi (π) bonds in the molecule $(NC)_2C=C(CN)_2$?

	σ	π
A.	9	9
B.	5	9
C.	13	5
D.	9	5

13. What is the hybridization of the circled carbon, oxygen and nitrogen atoms?

	Carbon	Oxygen	Nitrogen
A.	sp ³	sp	sp
B.	sp ²	sp ²	sp
C.	sp ²	sp ³	sp ²
D.	sp ³	sp ²	sp ²

14. Consider the following reactions:

$$\begin{split} &\text{Fe}_2\text{O}_3(\text{s}) + \text{CO}(\text{g}) \rightarrow 2\text{FeO}(\text{s}) + \text{CO}_2(\text{g}) \\ &\text{Fe}(\text{s}) + \text{CO}_2(\text{g}) \rightarrow \text{FeO}(\text{s}) + \text{CO}(\text{g}) \\ &\Delta H^\ominus = +11\,\text{kJ} \end{split}$$

What is the ΔH^{\ominus} value, in kJ, for the following reaction?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

- A. -25
- B. -14
- C. +8
- D. +19
- **15.** Which is correct when Ba(OH)₂ reacts with NH₄Cl?

$$Ba(OH)_{2}(s) + 2NH_{4}Cl(s) \rightarrow BaCl_{2}(aq) + 2NH_{3}(g) + 2H_{2}O(l)$$
 $\Delta H^{\ominus} = +164 \text{ kJ mol}^{-1}$

	Temperature	Enthalpy	Stability
A.	increases	products have lower enthalpy than the reactants	products are less stable than the reactants
B.	decreases	products have lower enthalpy than the reactants	products are more stable than the reactants
C.	decreases	products have higher enthalpy than the reactants	products are less stable than the reactants
D.	increases	products have higher enthalpy than the reactants	products are more stable than the reactants

16. What are the signs of ΔH^{\ominus} and ΔS^{\ominus} for the reaction, which is spontaneous at low temperature and non-spontaneous at very high temperature?

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

$$SO_3(g) + CaO(s) \rightarrow CaSO_4(s)$$

	ΔH ^e	ΔS ^e
A.	+	I
B.	П	+
C.	-	-
D.	+	+

17. Which change is exothermic?

A.
$$\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$$

B.
$$K(g) \rightarrow K^+(g) + e^-$$

C.
$$KCl(s) \rightarrow K^{+}(g) + Cl^{-}(g)$$

D.
$$Cl(g) + e^- \rightarrow Cl^-(g)$$

18. Samples of sodium carbonate powder were reacted with separate samples of excess hydrochloric acid.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + 2NaCl(aq) + H_2O(l)$$

Reaction I: 1.0 g Na₂CO₃(s) added to 0.50 mol dm⁻³ HCl (aq)

Reaction II: 1.0 g Na₂CO₃(s) added to 2.0 mol dm⁻³ HCl (aq)

What is the same for reactions I and II?

- A. Initial rate of reaction
- B. Total mass of CO₂ produced
- C. Total reaction time
- D. Average rate of production of CO₂

- **19.** What decreases the activation energy of a reaction?
 - A. Increasing the temperature
 - B. Adding a catalyst
 - C. Adding more reactants
 - D. Increasing collision frequency of reactants
- **20.** Compounds **X** and **Y** were mixed and the time taken for a colour to appear was recorded at various reactant concentrations.

Experiment	[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Time / s
1	0.12	0.16	20
2	0.06	0.16	40
3	0.12	0.08	80

What are the orders of reaction with respect to X and Y?

	X	Y
A.	1	2
B.	1/2	1/4
C.	2	1
D.	2	4

21. The rate expression for the reaction is: rate = $k [NO]^2 [O_2]$.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Which mechanism is **not** consistent with this rate expression?

A.	$ \begin{aligned} NO + NO &\rightleftharpoons N_2O_2 \\ N_2O_2 + O_2 &\to 2NO_2 \end{aligned} $	fast slow
B.	$2NO + O_2 \rightarrow 2NO_2$	slow
C.	$\begin{array}{c} NO + O_2 \to NO_2 + O \\ NO + O \to NO_2 \end{array}$	slow fast
D.	$ \begin{array}{c} NO + O_2 \rightleftharpoons NO_3 \\ NO_3 + NO \to 2NO_2 \end{array} $	fast slow

22. Consider the reaction:

$$2N_2O(g) \rightleftharpoons 2N_2(g) + O_2(g)$$

The values of K_{c} at different temperatures are:

Temperature / K	K _c
838	1.10×10^{-3}
1001	3.80×10^{-1}
1030	8.71×10^{-1}
1053	1.67

Which statement is correct at higher temperature?

- A. The forward reaction is favoured.
- B. The reverse reaction is favoured.
- C. The rate of the reverse reaction is greater than the rate of the forward reaction.
- D. The concentration of both reactants and products increase.

23. Which combination describes the system at equilibrium?

	Entropy value	Gibbs free energy value
A.	minimum	minimum
B.	maximum	minimum
C.	maximum	maximum
D.	minimum	maximum

24. Which two species act as Brønsted-Lowry acids in the reaction?

$$\mathsf{H_{2}PO_{4}^{-}(aq)} + \mathsf{OH^{-}(aq)} \Longrightarrow \mathsf{HPO_{4}^{2-}(aq)} + \mathsf{H_{2}O(l)}$$

- A. $HPO_4^{2-}(aq)$ and $OH^-(aq)$
- B. $H_2PO_4^-$ (aq) and HPO_4^{2-} (aq)
- C. $HPO_4^{2-}(aq)$ and $H_2O(l)$
- D. $H_2PO_4^-(aq)$ and $H_2O(l)$

25. What is the order of increasing pH for the following solutions of the same concentration?

- A. $NaCl < NH_4Cl < Na_2CO_3 < CH_3COONa$
- B. CH₃COONa < NH₄Cl < NaCl < Na₂CO₃
- C. NH₄Cl < NaCl < CH₃COONa < Na₂CO₃
- D. Na₂CO₃ < CH₃COONa < NaCl < NH₄Cl

26. Which species is not a Lewis base?

- A. OH
- B. NH₄⁺
- C. H₂O
- D. PH₃

27. An indicator, HIn, has a p K_a of 5.1.

$$HIn(aq) \rightleftharpoons H^{+}(aq) + In^{-}(aq)$$

colour A colour B

Which statement is correct?

- A. At pH = 7, colour B would be observed
- B. At pH = 3, colour B would be observed
- C. At pH = 7, $[HIn] = [In^{-}]$
- D. At pH = 3, $[HIn] < [In^-]$
- 28. Which is correct for the reaction?

$$P_4(s) + 3H_2O(l) + 3OH^-(aq) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$$

	Oxidizing agent	Reducing agent			
A.	H ₂ O	P_4			
B.	P_4	OH⁻			
C.	OH ⁻	P_4			
D.	P ₄	P ₄			

- 29. Which describes the flow of electrons in a voltaic cell?
 - A. From the cathode (positive electrode) to the anode (negative electrode) through the external circuit
 - B. From the anode (negative electrode) to the cathode (positive electrode) through the external circuit
 - C. From the oxidizing agent to the reducing agent through the salt bridge
 - D. From the reducing agent to the oxidizing agent through the salt bridge

30. Which is correct for a redox reaction where the standard electrode potential is negative?

$$\Delta G^{\ominus} = -nFE^{\ominus}$$
 and $\Delta G^{\ominus} = -RT \ln K$

- A. ΔG^{\ominus} is negative and K is less than 1.
- B. ΔG^{\ominus} is negative and K is greater than 1.
- C. ΔG^{\ominus} is positive and *K* is less than 1.
- D. ΔG^{\ominus} is positive and *K* is greater than 1.
- **31.** Consider the standard electrode potentials:

$$Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Cr(s)$$
 $E^{\ominus} = -0.74 \text{ V}$
 $Hg^{2+}(aq) + 2e^{-} \rightleftharpoons Hg(l)$ $E^{\ominus} = +0.85 \text{ V}$

What is the cell potential, in V, for the voltaic cell?

$$2Cr(s) + 3Hg^{2+}(aq) \rightarrow 3Hg(l) + 2Cr^{3+}(aq)$$

- A. -1.59
- B. +0.11
- C. +1.07
- D. +1.59
- **32.** Which compounds cause the colour of acidified potassium manganate(VII) solution to change from purple to colourless?
 - I. CH₃CH₂CH₂CH₃OH
 - II. (CH₃)₃CCH₂OH
 - III. CH₃CH₂CH(OH)CH₃
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

22	\	:_		£	henzene?
33.	vvrucn	18	correct	101	nenzene z

	14 111		1 1141	4.				
Δ	It readily	undergoes undergoes	addition	reactions	and	decolor iries	ac hromina	water
Λ.	it i Cauliy	undergoes	addition	1 Cachons	and	accolourist		water.

- B. It contains alternate single and double carbon–carbon bonds and is planar.
- C. Its ¹H NMR spectrum shows six signals and it readily undergoes substitution reactions.
- D. Its ¹H NMR spectrum shows one signal and it forms a single C₆H₅Br isomer.

34. Which compounds react to form CH₃CH₂CH₂COOCH(CH₃)₂?

- A. propanoic acid and propan-2-ol
- B. propanoic acid and butan-2-ol
- C. butanoic acid and propan-1-ol
- D. butanoic acid and propan-2-ol

35. Which statement about the reaction of a hydroxide ion with the organic reagent is correct?

- A. 1-bromopentane predominantly follows an S_N 1 mechanism.
- B. 2-bromo-2-methylbutane predominantly follows an S_N 2 mechanism.
- C. Reaction with 1-bromopentane occurs at a slower rate than with 1-chloropentane.
- D. Reaction with 1-bromopentane occurs at a slower rate than with 2-bromo-2-methylbutane.

36. What is the major product of the reaction of HBr with but-1-ene?

- A. 1-bromobutane
- B. 2-bromobutane
- C. 1,2-dibromobutane
- D. 2,2-dibromobutane

37. How many chiral carbon atoms are present in one molecule of (CH₃)₂CHCHClCHBrCH₃?

- A. 0
- B. 1
- C. 2
- D. 3

- **38.** What is the ratio of areas under each signal in the ¹H NMR spectrum of 2-methylbutane?
 - A. 6:1:2:3
 - B. 3:3:1:5
 - C. 6:1:5
 - D. 3:3:1:2:3
- 39. What are the absolute and percentage uncertainties for the change in mass?

Initial mass: $22.35 \pm 0.05 g$ Final mass: $42.35 \pm 0.05 g$

	Absolute uncertainty / g	Percentage uncertainty
A.	±0.05	0.1%
B.	±0.10	0.5%
C.	±0.05	0.5%
D.	±0.10	0.1%

- **40.** Which technique may be used to find the bond lengths and bond angles within a molecule?
 - A. X-ray crystallography
 - B. ¹H NMR spectroscopy
 - C. Infrared spectroscopy
 - D. Mass spectroscopy